PD98059-impregnated functional PLGA scaffold for direct tissue engineering promotes chondrogenesis and prevents hypertrophy from mesenchymal stem cells.

نویسندگان

  • Jong Min Lee
  • Jong Dae Kim
  • Eun Jo Oh
  • Se Heang Oh
  • Jin Ho Lee
  • Gun-Il Im
چکیده

In cartilage tissue engineering from mesenchymal stem cells, it is important to suppress hypertrophy to produce a neocartilage with stable phenotypes of hyaline articular cartilage (AC). The aim of this study was to develop and test the usefulness of functional chondrogenic scaffolds that serve the purpose of hypertrophy suppression. PD98059-impregnated poly(lactic-co-glycolic acid) (PLGA) scaffold is fabricated and compared with transforming growth factor (TGF)-β2-immobilized scaffold. The PD98059 is continuously released from the scaffolds over 140 days in contrast to the rapid release in TGF-β2-immobilized scaffold. The in vitro culture results show that the PD98059-impregated scaffold is more effective in suppressing hypertrophy than the TGF-β2-immobilized scaffold while both scaffolds enhance chondrogenesis from human mesenchymal stem cells. After 10 weeks of in vivo implantation in rabbits, the osteochondral defects is successfully repaired in both PD98059-impregnated and TGF-β2-immobilized scaffold seeded with rabbit mesenchymal stem cells when evaluated grossly and microscopically. However, type X collagen is not observed from regenerated cartilage in PD98059-impregnated scaffold, whereas it is detected around chondrocytes in the TGF-β2-impregnated scaffolds. In addition, the PD98059-impregnated scaffold has better reconstitution of the subchondral plate. These results suggest that the use of the PD98059-impregnated scaffold leads to AC regeneration of better quality and prevents hypertrophy when implanted in the osteochondral defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold

Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...

متن کامل

Comparison of PLGA/Fibrin and PLGA/Hyaluronic Acid Scaffolds for Chondrogenesis of Human Adipose-Derived Stem Cells

Background and Aims: Tissue engineering is a relatively novel field that has been intensely developing during recent years and has shown to be excessively promising when used for cartilage regeneration. Scaffolds represent important components for tissue engineering. Materials and Methods: The Poly Lactic-Co-Glycolic Acid (PLGA) impregnated with fibrin and hyaluronic acid (HA) produce hybrid s...

متن کامل

Comparison of Fibrin and PLGA/fibrin Scaffolds for Chondrogenesis of Human Adipose Derived Stem Cells by Icariin

Background: Recently, cartilage tissue engineering is the best candidate for regeneration of cartilage defects. We evaluated the potential of fibrin and PLGA/fibrin scaffolds in providing a suitable environment for growth and chondrogenic differentiation of human adipose derived stem cells (hADSCs) in the presence of icariin. Method: The Three-dimensional...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 20 5-6  شماره 

صفحات  -

تاریخ انتشار 2014